当前位置: 首页 >> 通知公告 >> 正文 通知公告
学术报告二则
  点击次数: 次 发布时间:2021-05-17   编辑:十大网投正规信誉官网

学术报告一:A generalized Lipschitz shadowing property

时间:2021年5月25日(星期二)下午14:00-15:00

地点:沙河校区,主教508

报告人:文晓副教授,北京航空航天大学人工智能研究院和数学科学学院

报告摘要:Shadowing property and structural stability are important dynamics with close relationship. Pilyugin and Tikhomirov proved that Lipschitz shadowing property implies the structural stability\cite{PT}. Todorov gave a similar result that Lipschitz two-sided limit shadowing property also implies structural stability for diffeomorpshisms\cite{T}. In this paper, we define a generalized Lipschitz shadowing

property which unifies these two kinds of Lipschitz shadowing properties, and prove that if a diffeomorphism $f$ of a compact smooth manifold $M$ has this generalized Lipschitz shadowing property then it is structurally stable. The only if part and similar results for $C^1$ vector fields are also considered.

报告人简介:北京航空航天大学人工智能研究院和数学科学学院副教授,人工智能研究院副院长。

学术报告二:Centralizers of partially hyperbolic diffeomorphisms homotopic to Anosov automorphisms on T3

时间:2021年5月25日(星期二)下午15:00-16:00

地点:沙河校区,主教508

报告人:张金华副教授,北京航空航天大学

报告摘要:In this talk, we will talk about the dynamics of partially hyperbolic diffeomorphisms homotopic to Anosov automorphisms on T3 and show that such diffeomorphism has virtually trivial centralizer or is smoothly conjuagte to its linear par. This is a joint work with S. Gan, Y. Shi and D. Xu.

报告人简介:张金华,北京航空航天大学,副教授,2017年获北京大学和勃艮第-弗朗什-孔泰大学博士学位,研究领域为微分动力系统和微分遍历论。已在Comm. Math.Phys., Trans.AMS, Comment. Math. Helv.等重要期刊上发表多篇论文。

首页

          版权所有:十大网投正规信誉官网-十大澳门信誉老牌网赌  
          地址:北京市昌平区沙河高教园十大澳门信誉老牌网赌沙河校区1号学院楼   邮政编码:102206   电 话:(010)61776184    
          邮箱:samofcufe@cufe.edu.cn    
         

学院公众号